PHYSICS 452/562 -- FALL 2021 ATOMIC PHYSICS AND LASERS

Lecture: T θ – 11:30 - 12:50 Room: Physics S-265 Text: van der Straten & Metcalf (Cambridge)

as of August 18, 2021 subject to change

Harold Metcalf - S225 - 632-8185 or 8036 harold.metcalf@stonybrook.edu find it at https://doi.org/10.1017/CBO9781316106242

Text: Milonni & Eberly, 2nd Edition (Wiley)

Week # Monday	Tuesday	Thursday	Reading & Homework
date			
Background in Atomic Physics and Quantum Mechanics.			
Ι	Historical Background	Schrödinger Equation(s)	vdS & M: Ch. 1, 2.1, 2.2
8/23	Classical models	Multiple solutions	Problem set $\#1$
II	Rabi and Bloch view	More on Bloch sphere	vdS&M: Ch. 2,; M&E: 9.1-9.3
8/30	for two-level atom	Dressed atom picture	Prob. set $\#2$
III	Separate S.E. for H atom	Fine structure	vdS & M: Ch. 7
9/6	(Tom Weinacht)	Relativity and spin-orbit	Problem set $\# 3$
IV	Atomic Clocks, Ramsey method,	Quantum defects	vdS & M: Ch. 8.1 - 8.5, 8.A, 8.B
9/13	Selection Rules	Other Atoms (Eric Jones)	vdS & M: 10.1 - 10.3 Problem set $\# 4$
V	Hyperfine structure	21 st Century Revolution in	vdS & M: Ch. 3.2.1, 3.3, 3.5, 9.1 - 9.3
9/20	Zeeman, Stark & dipole	Quantum Mechanics	vdS & M: Ch. 11; Problem set $\#5$
	Quantum Transitions, Ω_R	Superposition, Entanglement	
VI	A and B Coefficients	First Mid-term Exam	vdS & M: Ch. 5 and M & E: Sec. 3.7
9/27	Stimulated Emission	In Class (closed book)	M&E - Ch. 10, prob 10.10 & special
Laser Operation and Types of Lasers.			
VII	Introduction to Lasers	Longitudinal Modes,	M & E, Ch. 1
10/4	Three and Four levels	Single Mode - Lamb dip	M & E, Ch. 4, Sec's. 1-12
,	Gain - Rate Eq's	Saturated Absorption Spect.	M & E, prob's. 3.10, 4.1
VIII	NO CLASS	Gas Lasers: HeNe, CO_2 , Ar^+	M&E, Sec's. 5.8 - 5.11
10/11	HOLIDAY	Begin Tunable & Dye Lasers	M&E, 7.1-7.9, espec. 7.5 & Table 7.1
,			prob's 7.1, 7.3a, 7.4; prove Eq. 7.5.6
IX	Gaussian Beams and	Confocal Resonators cont'd	M&E, 11.3 - 11.11
10/18	Dye Laser Resolution	More About Tunable Lasers	M & E, prob's. 11.4, 11.7, 11.9
	Fabry-Perot Resonators	Ring Laser Cavities	
Х	Solid State Lasers	I & T dependence for diodes	M & E, 11.12 - 11.15
10/25	Ti:Sapphire, DPSS, and	Saturated Abs., Modulators,	no prob's - catch up
	Semiconductor Lasers	& Pound-Drever-Hall	
XI	Non-Linear Optics	Mode Locked Lasers	TBA
11/1	Harmonic Generation	Pulsed & Freq. Comb	
Applications of Lasers - Nobel Prizes.			
XII	Fiber Optics & Lasers - Limits	Laser Cooling & Temp. Limit	M&E 8.6, 8.7, 14.7
11/8	to Telecom – Nanofibers	Breaking the Limit	,,,,
XIII	Magnetic Traps & Optical	Trapping and Confinement	M&E 14.4 - 14.6
11/15	Lattices For Neutral Atoms	Optical Tweezers	prepare for exam
XIV	Second Hour Exam	NO CLASS	M&E All of ch. 14; prob's 14.6, 14.8a,
11/22	In Class	THANKSGIVING	14.6, 14.8a, 14.9a,b, 14.11, 14.14, 14.21
XV	Bose-Einstein	Resolution Limits	M&E All of ch. 14; prob's 14.6, 14.8a,
11/29	Condensation		14.6, 14.8a, 14.9a,b, 14.11, 14.14, 14.21
11/29	Condensation		\parallel 14.0, 14.0a, 14.9a, 0, 14.11, 14.14, 14.2

(Required Statement)

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Any suspected instance of academic dishonesty will be reported to the Academic Judiciary. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/uaa/academicjudiciary/

How the Course is Graded

HOMEWORK

Homework problems will be assigned regularly from either distribution in class (and posting on Blackboard) or taken from the text by Milonni and Eberly. They will be graded only when they're received on paper. The earlier assignments submitted by email overtaxed my printer (it's not a commercial printer) so I will no longer print and grade them. They need to be submitted on time by email, followed by paper mailed versions that will be checked against the email and then graded. Any other way of getting the paper version to me is OK.

EXAMS

There will be two exams, currently scheduled for 6 October and 19 November (subject to change). This is designated as an in-person course but I have accommodated several requests to take the classes remotely. However, exams will be given at announced times in the classroom (P-118). Exemptions from this policy can be granted only by the Student Accessibility Support Center (SASC).

GRADES

Grades will be based approximately equally on these two aspects of the course, with a boost given to those students who participate actively in class.