SUNY AT STONY BROOK
DEPARTMENT OF MECHANICAL ENGINEERING

Vibration and Control

COURSE TITLE: MEC532 Vibration and Control, Fall 2007
PREREQUISITES: Permission of instructor

LECTURE: Wed 17:20 – 20:10; Room: Old Engineering 112
INSTRUCTOR: Dr. Imin Kao, Professor email: kao@mal.eng.sunysb.edu
OFFICE: LE-167; Phone (631)632-8308
OFFICE HOURS: Mon 12:00-14:00, Wed 15:00-17:00 & other time by appointment

COURSE OBJECTIVES: Fundamentals of vibrations and control of vibrations of structures and dynamic systems. Topics include one dof systems and responses, multiple dof systems and responses, classical feedback control theory, modern state-space feedback control theory, application of control methodology in structures and systems under vibration and dynamics; introduction of optimal control theory; feedforward control; distributed transducers for active control of vibration.

TEXTBOOK: No textbook is required. Most course materials are based on lecture notes and handouts. Recommended references are listed.

EXAMINATIONS: Two midterm exams (in class)
One Final Exam (TBA)
 • All exams are scheduled in class, unless otherwise specified
 • NO make-up exams unless arranged prior to the exams

GRADING: Your semester letter grade is based on your performance on the following subjects, including exams and homework assignments:

 Midterms: Two midterm exams, 25 pts ea.
 Final: One final exam (see schedule above), 35 pts
 Homework: Assigned weekly, 15 pts

TOPICS: (on the next page)
Topics of MEC532 course include the following:

- Introduction to mechanical vibrations of one dof systems
- Free, forced, damped vibration and analysis for one dof systems
- Responses: transient and steady-state response using the Laplace Transform
- Multiple dof systems and their free/forced vibration analysis
- Modal analysis and eigenvalue problems
- Classical feedback control theory and block diagram representation of dynamic systems
- Root locus, Bode diagrams, and Nyquist plot
- Control of response of one dof systems
- Modern control theory (or state-space control theory)
- Converting dynamic equations of motion to state-space realization
- Canonical forms of state-space realization
- SISO and MIMO systems and control
- Control law (controller) & estimator design
- Introduction to optimal control
- Example of 2 dof and multiple dof systems
- Feedforward control and adaptive control
- Distributed transducers for active control of vibrations
- MATLAB and Simulab usage
- Introduction to nonlinear control
Usage of the Blackboard and PodCasting

You are required to use the Internet to access Blackboard and online information for important announcements, homework/handouts, and supplementary materials of the course. I will use PodCasting to make available lectures and supplementary materials. The PodCasting materials can be accessed through iTunes\(^1\) or viewed directly on your computer. You can access blackboard and podcast server at:

http://blackboard.stonybrook.edu
http://podcast.ic.sunysb.edu:16080/weblog/MEC532/

Please note that you have to use your NetID to login to the blackboard system. Go to the helpdesk in the Main Library SINC Site if you have problems logging in. You can also call: 631-632-9602 or e-mail: helpme@ic.sunysb.edu for further information.

Important Copyright Notice: The materials in this course available online or via a website link are for the exclusive use of registered students currently enrolled in this course, and may not be retained or further distributed. In addition to legal sanctions, violation of these copyright prohibitions may result in University disciplinary action. (See also the notice in your Blackboard account.)

Various University Policies and Statements

Americans with Disability Act & University Policy: If you have a physical, psychological, medical or learning disability that may impact your course work, please contact Disability Support Services, (631) 632-6748. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential. For more information, refer to:

http://studentaffairs.stonybrook.edu/disabilityservices/
http://studentaffairs.stonybrook.edu/dss/staff

Students requiring emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. Call 911 if you need immediate assistance. For more information, go to:

http://www.stonybrook.edu/facilities/ehs/fire/disabilities.shtml

The SUNY Critical Management Initiative: Stony Brook University expects students to maintain standards of personal integrity that are in harmony with the educational goals of the institution; to observe national, state, and local laws and University regulations; and to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of Judicial Affairs any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, and/or inhibits students’ ability to learn.

Academic Integrity Statement of University: Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person’s work as your own is always wrong. Any suspected instance of academic dishonesty will be reported to the Academic Judiciary. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/uaa/academicjudiciary/

\(^1\) iTunes is a free software for both PC and Macintosh. Download it from http://www.apple.com/itunes/download/.