MEC 442/528
Introduction to Experimental Stress Analysis
Fall 2011

Instructor: Professor Fu-pen Chiang
Office: Light Engineering, Room 103

Lectures: Thursday 5:00PM-8:00PM
Location: Physics P113

Or Shukla & Dally, Experimental Solid Mechanics, ISBN 0-9792581-8-9

I. Elements of Elasticity:
 Concepts of Stress, Strain, Stress-Strain Relation, Equilibrium Equation, and Compatibility Equation

 Exam #1

II. Moiré Methods of Strain Analysis:
 Parametrical Description of Moiré
 Geometrical Relationship of Moiré
 General Theory of Moiré Methods
 In-plane Moiré Method
 Shadow Moiré Method
 Reflection Moiré Method

 Project #1 In-plane Moiré Analysis
 Project #2 Shadow Moiré Analysis

 Exam #2

III. Photoelasticity
 Concept of Polarized Light
 - Plane polarized light
 - Circularly polarized light
 - Elliptical polarized light

 Composition of Polariscope
 - Plane polariscope
 - Circular polariscope

 Concepts of Birefringence (double refraction)
 Stress-Optic Law
 Isochromatics and Isoclinics and Stress Analysis
IV. Brief Introduction to Speckle Method and Holographic Interferometry

Exam #3 – Final Exam
25% on Elasticity
25% on Moiré
50% on Photoelasticity

Final Grade = 20% Exam #1
20% Exam #2
30% Project Reports
30% Final Exam

Americans with Disabilities Act
If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact Disability Support Services at (631) 632-6748 or http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential. Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website: http://www.sunysb.edu/ehs/fire/disabilities.shtml

Statement on Academic Dishonesty
Academic dishonesty is an extremely serious offense and will not be tolerated in any form. Academic dishonesty in general is the presentation of intellectual work that is not originally yours. Examples include, but are not limited to, copying or plagiarizing class assignments including homework, reports, designs, and other submitted materials; copying or otherwise communicating answers on exams with other students; bringing unapproved aids, either in physical (written) or electronic form to an exam; obtaining copies of an exam prior to its administration, etc. Academic dishonesty violates both the ethical and moral standards of the Engineering profession and all infractions related to academic dishonesty will be prosecuted to the fullest via the CEAS CASA committee. For you, the honest student, academic dishonesty results in lower class curves, hence a depression in your GPA and class standing, while cheapening the degree you earn.

Allowed Calculators
Following the Mechanical Engineering Department’s mandatory calculator policy, only the following calculators will be allowed to be used on the midterm and final exams. There will be no exceptions. This list of calculators is identical to that allowed for the National Council for Examiners for Engineering and Surveying (NCEES) Fundamentals of Engineering (FE) exam that many of you will take in your senior year, as well as the Professional Engineering (PE) exam that you may take several years from now. The sooner you become comfortable on one of these calculators, the better. If you have any questions on this policy please feel free to contact me. The NCEES policy on calculators can be found here: http://www.ncees.org/exams/calculators/.

Casio: All fx-115 models. Any Casio calculator must contain fx-115 in its model name.
Hewlett Packard: The HP 33s and HP 35s models, but no others.
Texas Instruments: All TI-30X and TI-36X models. Any Texas Instruments calculator must contain either TI-30X or TI-36X in its model name.