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ABSTRACT
This paper presents implementation of fixed-pivots, ground-

link line, and tolerance based motion synthesis in the 4MDS
(Four-Bar Motion Design System). This is a continuation of
the first work reported on 4MDS, which provides an interactive,
graphical, and geometric constraint based mechanism design
system for the exact- and approximate-motion synthesis prob-
lems. Theoretical foundation of the 4MDS is laid over a kine-
matic mapping based unified formulation of the geometric con-
straints (circle, fixed-line, line-tangent-to-a-circle) associated
with the mechanical dyads (RR, PR, and RP) of a planar four-
bar mechanism. An efficient algorithm extracts the geometric
constraints of a given motion task and determines the best dyad
types as well as their dimensions that best fit to the motion. Of-
ten, Mechanism designers need to impose additional geometric
constraints, such as specification of location of fixed pivots or
ground-link line. If synthesized mechanism suffers from branch,
circuit, or order defect, they may also desire rectified solutions
by allowing a tolerance to certain or all task positions. Such
functions are crucial to a practitioner and much needed during
the conceptual design stage of machine design process.

1 Introduction
This paper is a continuation of work reported earlier in Pur-

war et al. [1], wherein we presented a planar Four-Bar Motion

Design System (4MDS). The 4MDS is a geometric constraint
based motion generation system that synthesizes planar four-bar
linkages of all types. The core algorithm in 4MDS is an imple-
mentation of the simultaneous type and dimensional synthesis
approach presented in Ge and Purwar [2] and Ge et al. [3]. The
algorithm extracts the geometric constraints hidden in a given
motion task to determine the best linkage type consisting of
revolute- or prismatic-joints and provides the dimensional pa-
rameters. On the simulation side, the 4MDS provides a natural
environment for the mechanism designers to input a mechanism
by assembling geometric constraints associated with mechanical
dyads (circle, fixed-line, and line-tangent-to-circle), examine the
circuits and branches, observe the effect of actuating dyads on
branching, and simulate the mechanism. In Synthesis mode, the
4MDS is capable of synthesizing linkages for N(≥ 5) task posi-
tions for both exact- and approximate- synthesis problems. For a
given motion, the designer can select from up to 4 possible dyads
of types RR, RP, and PR to assemble a total of up to 6 linkages.

However, to enable adoption among practitioners, it is im-
portant that the system has the capability to admit designers’
constraints. Often, mechanisms found suffer from undesirable
Circuit, Branch, or Order defects (Chase and Mirth [4]). One ap-
proach to solving this problem is to allow tolerance in the given
task positions if the problem permits and thereby expand the so-
lution space from which potentially defect-free mechanisms can
be found. Venkataraman et al. [5] proposed this for generating
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FIGURE 1. Example: A Sit-To-Stand Mobility Assist Device em-
ploys two identical planar linkages, one on each side to aid in getting
up. Fixed pivots are constrained to be on a compact, portable frame.

four-bar linkages for four-position synthesis problem. Prof. Ken
Waldron and his colleagues have authored many papers on the
topic of branch- and circuit-defect rectification in planar link-
ages, a summary of which can be found in a recent publication
by Chase et al. [6]. The new version of 4MDS takes this ap-
proach by allowing tolerances in the orientation part of the given
positions. The number of new positions and range of rotation are
completely controlled by the designer.

Apart from the aforementioned defect-rectification, the
mechanisms may also need to satisfy additional geometric con-
straints, such as the location of fixed- or moving-pivots or the
location of the ground-link line, etc. For example, a key require-
ment in a portable Sit-To-Stand Mobility Assist device that em-
ploys a linkage in assisting a disabled individual to execute a
standing up motion is that it be compact and the positions of the
fixed pivots be located on the frame; see Fig. 1. 1 The algorithm
employed in 4MDS allows imposition of additional such geomet-
ric constraints. This paper implements an approach presented in
Ge et al. [8], wherein we show that for four-positions synthe-
sis problem, a ∞1 solutions can be reduced to a finite number of
solutions by assigning a line for the fixed pivots, while for three-
position synthesis problems, which admit ∞2 solutions, two sep-
arate fixed pivots can be specified. We review this approach in
this paper.

Apart from the technical capabilities of 4MDS, hitherto un-

1In fact, the development of 4MDS was motivated by such practical concerns
and difficulties faced by Purwar et al. [7] during design of this device.

known in any mechanism design and simulation software, the
system provides an intuitive, fluid interface that facilitates a dia-
log with the designer. Simulation and synthesis features provide
a lot of flexibility – for example, after synthesizing a mechanism,
the mechanism can be edited and the designer can compare the
new motion with the old one. Another example is that of approx-
imating an RR dyad by an RP or PR dyad by restricting work-
space size or limiting the length of links.

This body of work is placed under the topic of Kinematic
Synthesis of Mechanisms covered extensively in books by Mc-
Carthy and Soh [9], Sandor and Erdman [10], Hunt [11], Harten-
berg and Denavit [12], and Suh and Radcliffe [13]. The key
papers related to this work use kinematic mapping approach
(Blaschke [14] and Grunwald [15]). Readers are referred to Bot-
tema and Roth [16], McCarthy [17] and Ravani and Roth [18,19]
for a modern treatment and application of kinematic mapping.
The problem itself, that is of motion generation for a set of given
task positions is closely related to the classical Burmester prob-
lem [20], which has been attempted in the last decade to include
both revolute and prismatic joints ( [21, 22, 23, 24]). The devel-
opment of 4MDS falls under the topic of Computer Aided Mech-
anism Design, a detailed review of which can be found in Chase
et al. [6] and summarized in Purwar et al. [1], both published
recently.

The 4MDS software developed indigenously at
Stony Brook University is a work in progress and
assumes no liability for its use. It can be down-
loaded at http://cadcam.eng.sunysb.edu/software or at
http://me.eng.sunysb.edu/software.

The organization of the rest of the paper is as follows. Sec-
tion 2 reviews kinematic fundamentals and a formulation of ge-
ometric constraints of dyads insofar as necessary for this paper.
Section 3 presents tolerance based synthesis approach, while sec-
tions 4 and 5 present the incorporation of fixed ground-link and
fixed-pivot constraints in 4MDS, respectively. Additional fea-
tures and functionalities in 4MDS are presented in the latter three
sections as appropriate.

2 Theoretical Formulation
The 4MDS’s core functionality is rooted in an implementa-

tion of our task driven approach to unified type and dimensional
synthesis of planar four-bar linkages (Ge and Purwar [2]). This
paper reports a computational implementation of our work in [8]
on incorporating additional geometric constraints, such as fixed
pivots, ground-link line, and tolerance based synthesis in 4MDS.
In [8], we have shown that additional geometric constraints can
be handled in a simple way without changing the core algorithm.
In what follows, we briefly review some of the fundamentals
from these two papers insofar as necessary to demonstrate new
functions in 4MDS. We refer the reader to the original papers for
more details.
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2.1 Kinematic Mapping of Planar Displacements
Let M denote a coordinate frame attached to the moving

body and F be a fixed reference frame. Then, a planar dis-
placement given by translation (d1,d2) of a point and rotation
φ in M can be parameterized by planar quaternion coordinates
Z = (Z1,Z2,Z3,Z4) (Ravani and Roth [18] and McCarthy [17])
using the following kinematic mapping

Z1 =
1
2
(d1 sin

φ

2
−d2 cos

φ

2
), (1)

Z2 =
1
2
(d1 cos

φ

2
+d2 sin

φ

2
),

Z3 = sin
φ

2
, Z4 = cos

φ

2
.

Then, a planar displacement represented as a homogeneous
transformation of point x = (x1,x2,x3) or line l = (l1, l2, l3) from
M to F can be given by

X = [H]x, [H] =

Z2
4 −Z2

3 −2Z3Z4 2(Z1Z3 +Z2Z4)
2Z3Z4 Z2

4 −Z2
3 2(Z2Z3−Z1Z4)

0 0 Z2
3 +Z2

4

 , (2)

L = [H]l, [H] =

 Z2
4 −Z2

3 −2Z3Z4 0
2Z3Z4 Z2

4 −Z2
3 0

2(Z1Z3−Z2Z4) 2(Z2Z3 +Z1Z4) Z2
3 +Z2

4

 ,
(3)

where Z2
3 +Z2

4 = 1 and X = (X1,X2,X3) and L = (L1,L2,L3) are
corresponding point and line coordinates in F .

2.2 Geometric Constraints of Mechanical Dyads
Mechanical dyads of types RR, PR, and RP in Planar four-

bar linkages impose circle-, line-, or line-tangent-to-circle con-
straints on the end-effector, respectively. Using kinematic map-
ping, these geometric constraints can be written in a unifying
algebraic form. Let a = (a1,a2,a0), where a0 6= 0, denote homo-
geneous coordinates of the center of a circle C in F . Then a point
with homogeneous coordinates X = (X1,X2,X3) lies on C if

2a1X1 +2a2X2 +a3X3 = a0

(
X2

1 +X2
2

X3

)
. (4)

The radius r of the circle is given by

r2 = (a1/a0)
2 +(a2/a0)

2 +a3/a0. (5)

When a0 = 0, Eq.(4) becomes linear,

L1X1 +L2X2 +L3X3 = 0, (6)

which represents a line with homogeneous coordinates L =
(2a1,2a2,a3). Thus, Eq.(4) is a unified presentation for both a
circle and a line, and therefore, could lead to a unified represen-
tation of the constraints of RR and PR dyads.

For an RP dyad, a line with homogeneous coordinates L =
(L1,L2,L3) passes through a fixed point X = (X1,X2,X3). In
other words, they also satisfy (6).

Thus, we may conclude that all three dyadal constraints can
be represented by Eq. (4) and that when a0 = 0, the dyad has at
least one prismatic joint.

By substituting (2) into (4), we have shown in [2] that the
constraint manifold of an RR dyad is the following quadric sur-
face

p1(Z2
1 +Z2

2)+ p2(Z1Z3−Z2Z4)+ p3(Z2Z3 +Z1Z4)

+p4(Z1Z3 +Z2Z4)+ p5(Z2Z3−Z1Z4)+ p6Z3Z4

+p7(Z2
3 −Z2

4)+ p8(Z2
3 +Z2

4) = 0, (7)

where the eight coefficients pi are not independent but must
satisfy two quadratic conditions

p1 p6 + p2 p5− p3 p4 = 0, 2p1 p7− p2 p4− p3 p5 = 0. (8)

This is because pi are related to the geometric parameters of the
dyad by

p1 =−a0, p2 = a0x p3 = a0y, p4 = a1, p5 = a2,
p6 =−a1y+a2x, p7 =−(a1x+a2y)/2,
p8 = (a3−a0(x2 + y2))/4,

(9)

where (a0,a1,a2,a3) are the homogeneous coordinates of the
constraint circle and (x,y) are the coordinates of the circle point.
For a PR dyad, we have a0 = 0 and therefore, p1 = p2 = p3 = 0.
Eqns. (7) and (8) are said to define the constraint manifold of RR
and PR dyads.

By substituting (3) into (6), it is found that for RP dyad,
the constraint manifold has the same form as Eqns. (7) and (8),
however we now have p1 = p4 = p5 = 0. Thus, all planar dyads
can be represented in the same form by Eqns. (7) and (8), and we
can determine the type of a planar dyad by looking at the zeros in
the coefficients pi (called signature of a dyad). In our approach,
we first obtain the homogeneous coordinates pi, determine the
dyad type from the signature of coefficient array pi, and then
compute the dyad parameters using inverse relationships in (9).

3 Tolerance Based Synthesis
The synthesis of planar four-bar linkage in 4MDS is based

on two fundamental steps: 1. fitting of given task image points to
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a pencil of quadrics (Eq. (7)), 2. imposing additional constraints
(Eq. (8)) on the pencil to reveal constraint manifold of dyads
(see [2] for details). Given N task positions (N ≥ 5), substitut-
ing for their quaternion components in Eq. (7), N linear equa-
tions are obtained. However, since there are no more than five
independent dyad parameters, the system of equation [A]p = 0 is
over-constrained, where p is the column vector of homogeneous
coefficients pi(i = 1 . . .8). The coefficient matrix [A] is given by:

[A] =



A11 A12 A13 A14 A15 A16 A17 A18
...

...
...

. . .
...

...
...

AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8


(10)

where, for the ith image points, we have

Ai1 = Z2
i1 +Z2

i2, Ai2 = Zi1Zi3−Zi2Zi4, (11)
Ai3 = Zi2Zi3 +Zi1Zi4, Ai4 = Zi1Zi3 +Zi2Zi4,

Ai5 = Zi2Zi3−Zi1Zi4, Ai6 = Zi3Zi4,

Ai7 = Z2
i3−Z2

i4, Ai8 = Z2
i3 +Z2

i4.

Using Singular Value Decomposition (SVD), the over-
constrained system of linear equations can be solved as a total
least squares minimization problem with the constraint pT p = 1.
The solutions are the right singular vectors of [A] corresponding
to the least singular values. These vectors form an orthonormal
set of basis vectors spanning the nullspace of [A]. For N ≥ 5, the
rank of matrix [A] is five, then the matrix [A]T [A] has three zero
eigenvalues and the corresponding eigenvectors, vα , vβ and vγ ,
define the basis for the null space. Let α,β ,γ denote three real
parameters. Then, any vector in the null space is given by

p = αvα +βvβ + γvγ . (12)

The above also defines a pencil of quadrics as α,β , and γ are
varied.

For vector p to satisfy Eq. (8), we substitute (12) into (8) and
obtain two homogeneous quadratic equations in (α,β ,γ):

K10α2 +K11β 2 +K12αβ +K13αγ +K14βγ +K15γ2 = 0,
K20α2 +K21β 2 +K22αβ +K23αγ +K24βγ +K25γ2 = 0,

(13)

where Ki j are defined by components of the three eigenvectors
obtained from SVD algorithm. These two quadratic equations

FIGURE 3. Icons that govern task specification and editing; from left
to right: home (reset), read input file, write output, input task position,
edit task position, synthesize

FIGURE 4. Synthesis options; from left to right: Tolerance Based
Synthesis, Four Positions Synthesis, Three Positions Synthesis, Gener-
ate Arbitrary Positions, Settings

can be further reduced to a single quartic equation in one un-
known parameter in terms of the ratio of two of the three param-
eters (α,β ,γ) and thus can be analytically solved.

For given N positions, if either of the four possible dyad so-
lutions do not satisfy the designer’s requirements, such as a cir-
cuit, branch, or order defect-free mechanism, the 4MDS allows
the designer to specify a tolerance for all the given positions so
as to expand the solution space. In the current implementation,
the designer can vary the orientation part of given positions. This
allows a simultaneous change in all of the four quaternion param-
eters. For example, generating 3 new orientations in the vicinity
of the original orientation for each of the 5 positions in a given
motion computes up to 4 dyads for each of the new 243 task sets
in less than 5 seconds. We illustrate this via an example for five
task positions given in Table 1.

TABLE 1.

d1 d2 φ (degree)

-5.58 1.09 43.8

-2.92 1.84 11.4

-5.29 1.73 -16.26

1.14 5.04 -57.33

2.32 -1.98 -118.8

1. Select Input Task to enter five positions interactively or from
a file (see Fig. 3 for icon details)

2. After positions are entered, select Tolerance Based Synthesis
icon (see Fig. 4).

3. In the Tolerance Specification dialog, select Tolerance value
(150 in this case) and number of positions (3 in this case);
this creates three new positions: −150,0,+150.
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FIGURE 2. A screenshot of the 4MDS showing Design Space of the synthesized five toleranced positions.

4. Based on the Tolerance specification, a number of solutions
are computed (35 = 243 in this case) and stored in a tabular
form as shown in Fig. 2.

5. Click on a solution in the table to load dyads. Choose two
dyads at a time at the bottom of the program window. The
shown solution is circuit-, branch- and order-defect free.

6. Save dyad parameters data; this data is automatically saved
in a file dyad parameters.txt. Table 2 contains the computed
dyad parameters data.

TABLE 2.

Dyad Type a1/a0 a2/a0 x1/x3 x2/x3 r

RR -0.92 -10.09 -0.51 -2.3 9.78

RR -1.41 -1.25 0.15 -4.34 1.24

We are implementing a user-defined filter that would auto-
matically sort the produced linkages based on user’s preferences
thereby removing the tedium of manually inspecting solutions.

Comment on Synthesis and Simulation

After the algorithm has computed dyad solutions, the de-
signer can choose two dyads (see Fig. 5) to display a four-bar
linkage. The determination of the dyad type is based on practical
constraints of workspace size. Instead of directly determining
the dyad type from the signature of the p− vector, the dyads are
interpreted to be an RP or PR from an RR dyad if its radius is
larger than a multiple of the workspace size. If an RR dyad is
found to be longer than the selected maximum radius, it is forced
to be interpreted as either a RP or a PR dyad based on the loca-
tion of the fixed pivot. For an RP dyad, the approximating RR
dyad has a large radius, but the center is not far off, while for a
PR dyad, the radius is large as well as the center is far off. All of
these multiples are completely user-customizable – the user can
change the workspace size and also the maximum link length (ra-
dius) as a multiple of the workspace width in the Settings option.
In the dyad selection widget, the PR dyad in Fig. 5 has been re-
interpreted from an RR dyad – the reinterpreted dyad is shown
with a ∗ next to it. The user can always see the original RR dyad
and even change the workspace size and multiple factor to see
how this interpretation changes the dyad type. Choosing a very
low multiple factor may yield poor approximation to the given
motion, while a very large factor may yield impractically large
mechanisms. A dyad obtained from synthesis or entered interac-
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FIGURE 5. Checkboxes enable designer to select two dyads at a
time. The one marked with an asterisk is a re-interpreted dyad based
on workspace size and the maximum link length.

FIGURE 6. These icons allow designer to input dyadal constraints
interactively; from left to right: assemble a mechanism mode, edit as-
sembled mechanism mode, circle (RR-dyad) constraint, fixed-line (PR-
dyad) constraint, moving-line (RP-dyad) constrain, moving frame loca-
tion

tively can be edited by selecting Mechanism Edit Mode (Fig. 6)
and then dragging the pivots or clicking on a dyad to provide nu-
merical data. The existing dimensions of the dyad are displayed
in the bottom left corner and can be edited.

4 Fixed Ground-link Line Constraint
It is well-known that for 4 position motion synthesis prob-

lems, there are ∞1 linkage solutions. A simple way to reduce
them to finite solutions is to impose a constraint on the locations
of the fixed pivot, such as that they lie on a given fixed line. In
this case, the matrix [A] in (10) becomes a 4×8 matrix and thus
the matrix [A]T [A] is of rank 4. The application of SVD algorithm
yields four zero eigenvalues. Let vα , vβ , vγ and vµ denote four
eigenvectors associated with the zero eigenvalues. They form the
basis of the four-dimensional null space of [A]. Any vector p in
the null space as given by

p = αvα +βvβ + γvγ +µvµ (14)

defines a candidate constraint manifold of a planar dyad that is
compatible with the four specified task positions. We need to
select the real parameters (α,β ,γ,µ) such that both constraints
in Eqs.(8) are satisfied. This leads to

K10α2 +K11β 2 +K12µ2 +K13αβ +K14αµ +K15β µ +K16αγ

+K17βγ +K18µγ +K19γ2 = 0,
K20α2 +K21β 2 +K22µ2 +K23αβ +K24αµ +K25β µ +K26αγ

+K27βγ +K28µγ +K29γ2 = 0,
(15)

where Ki j are obtained from Zi (i = 1,2,3,4). Thus, the homo-
geneous parameters (α,β ,γ,µ) have ∞1 many solutions .

An easy way to obtain finite solutions without increasing
the complexity of the problem is to impose a linear relationship

among these parameters, i.e.,

k1α + k2β + k3γ + k4µ = 0. (16)

By varying the choice of ki, one obtains different solutions for
(α,β ,γ,µ).

Constraining the center point (Xc,Yc) of an RR dyad to a line
L1Xc +L2Yc +L3 = 0, we obtain one form of Eq. (16) as

−L1 p4−L2 p5 +L3 p1 = 0, (17)

where p1, p4, p5 are functions of (α,β ,γ,µ) via Eq. (14). Let
us illustrate this via an example for four task positions and fixed
line coordinates given in Table 3:

TABLE 3.

d1 d2 φ (degree)

-6.89 3.80 -4

1.80 3.23 -33.6

3.71 1.81 -58.9

4.92 -7.6 -77.1

L1 L2 L3

-0.4281 1 1.5658

1. Select Input Task and enter four positions interactively from
the Table 3 or from a file

2. After four positions are entered, select Four Positions icon
(see Fig. 4). Interactively draw a line that represents the
fixed ground-link line constraint. Table 3 gives homogenous
co-ordinates of this line.

3. As soon as the line is entered, dyads are computed. Select
two dyads from the check boxes in the bottom row.

4. Swap actuating dyad, switch between open and crossed con-
figuration and run simulation to observe the mechanism be-
havior: examine circuit, position traversal order, and type of
the computed mechanism

5. Save dyad parameters data; this data is automatically saved
in a file dyad parameters.txt. Table 4 contains the computed
dyad parameters data.

Figure 7 shows the final synthesized mechanism.

5 Fixed Ground-Pivot Constraints
For three positions synthesis problem, which has ∞2 number

of solutions, imposing two linear constraints reduces the number
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FIGURE 7. A screenshot of the 4MDS showing Design Space of the synthesized four positions with ground-link line constraint.

TABLE 4.

Dyad Type a1/a0 a2/a0 x1/x3 x2/x3 r

RR -4.05 -3.3 1.48 -3.84 5.55

RR -0.43 -1.75 0.30 -4.54 1.03

of solutions. In this case, there are only three linear equations in
the form of (7) and the null space of the resulting coefficient ma-
trix [A] is five dimensional. There are five zero eigenvalues from
the matrix [A]T [A]. The corresponding eigenvectors are denoted
by vα ,vβ ,vγ ,vµ ,vη . A vector in the null space is given by

p = αvα +βvβ + γvγ +µvµ +ηvη (18)

and only those p that satisfy (8) define the constraint manifolds
of feasible dyads. We may use two linear equations of the form
(16) to limit solutions. We illustrate this via another example of
3 positions with fixed ground pivots given in Table 5.

1. Select Input Task icon and Enter three positions interactively
or from a file.

TABLE 5.

d1 d2 φ (degree)

-0.43 2.77 -23.31

1.83 3.50 -72.59

3.06 0.14 -90

Pivot Points Xc Yc

1 -5 1

2 0 -1

2. After three positions are entered, select Three Positions icon
(see Fig. 4). Interactively enter two points representing the
location of the fixed pivots.

3. As soon as the points are entered, dyads are computed. Se-
lect two dyads from the check boxes in the bottom row.

4. Swap actuating dyad, switch between open and crossed con-
figuration and run simulation to observe the mechanism be-
havior: examine circuit, position traversal order, and type of
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FIGURE 8. A screenshot of the 4MDS showing Design Space of the synthesized three positions with given ground pivots.

the computed mechanism
5. Save dyad parameters data; this data is automatically saved

in a file dyad parameters.txt. Table 6 contains the computed
dyad parameters data.

TABLE 6.

Dyad Type a1/a0 a2/a0 x1/x3 x2/x3 r

RR 0 -0.99 2.47 0.01 3.35

RR -4.99 1.01 -1.71 -5.48 2.71

Figure 8 shows the final synthesized mechanism.

6 Conclusions and Future Work
This paper presented an implementation of our recent work

on incorporating practical geometrical constraints and tolerance
based synthesis to a new interactive, GUI-driven planar four

bar mechanism software system called 4MDS, which can com-
pute both type and dimensions simultaneously for a given mo-
tion task. Such functions are necessary in a practical tool of
its ilk. However, work remains on allowing designer to input
other kinematic- and geometric-constraints, automated evalua-
tion and filtering of computed linkages based on criteria such
as circuit/branch/order defect, transmission angle for tolerance-
based synthesis or incorporating the defect resolution in the syn-
thesis algorithm.
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