
Proceedings of the ASME 2016 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC2016
August 21-24, 2016, Charlotte, North Carolina, USA

IDETC2016-60499

USING KINECT TO CAPTURE HUMAN MOTION FOR MECHANISM SYNTHESIS,
MOTION GENERATION AND VISUALIZATION

Anurag Purwar∗, Rumit Desai

anurag.purwar@stonybrook.edu
Computer-Aided Design and Innovation Lab

Department of Mechanical Engineering
Stony Brook University

Stony Brook, New York, 11794-2300

ABSTRACT

In this paper, we are presenting a framework for captur-
ing human motions using Microsoft Kinect sensor for the pur-
pose of 1) generating task positions for mechanism and robot
synthesis, and 2) generation and visualization of B-spline inter-
polated and approximated motion from the captured task posi-
tions. The theoretical foundation of this work lies in Kinematic
Mapping, Dual and Bi-quaternions, and NURBS (Non-Uniform
Rational B-spline) geometry. Lately, Kinect has opened doors
for creation of natural and intuitive human-machine interactive
(HMI) systems in medicine, robotic manipulation, CAD, and
many other fields, where visual-sensing and -capture is a cen-
tral theme. Kinect has made a huge impact in physical therapy
area, achieving new benchmarks in tele-rehabilitation by improv-
ing physical exercise assessment, monitoring and supervision
using the skeletal data. Moreover, Kinect’s depth sensing ca-
pability has helped in retrieving depth information required for
robotic vision in grasping, object recognition which was previ-
ously done using computationally demanding computer vision
algorithms. Kinect’s point cloud data with interactive gestures
has proven to be useful in various CAD software for conceptual
design of shapes. Mechanism synthesis is one of the areas in
Kinematics, where Kinect-provided skeletal data can be lever-
aged to design and develop highly customized end-user collab-
orated mechanism solutions. We demonstrate that using Kinect,
OpenGL, and Openframeworks, we can capture discrete (or, key)

rigid body displacements, continuous motions, and generate and
visualize rational B-spline motions from captured key positions.
Capturing only a few key positions results in significant data sav-
ings and also provides a natural way to create tasks for mecha-
nism synthesis problems. The output is a set of dual quaternions
and 4× 4 homogeneous transforms representing a task motion,
which can be used as an input for mechanism synthesis applica-
tions. The tool produced also allows users to generate trajectories
of various points on a moving rigid body interactively. A Kinect-
based capture of such motions can help create highly-customized
assistive devices for people who suffer from a range of motion-
related difficulties due to old age or disabilities.

1 Introduction
Apart from its Xbox gaming system, Microsoft Kinect has

found niche applications in physical therapy and rehabilitation,
robotics, CAD and computer vision domain. Lars et al. [1] made
an argument to use markerless systems for capturing human mo-
tions without creating artificial stimuli and artifacts in the cap-
ture process. Kinect, a non-intrusive and economical sensor,
has given new dimension to physical therapy rehabilitation pro-
cess by providing developers a simple and time-efficient means
to create interactive games to make patients exercise and pro-
vide musculoskeletal rehabilitation [2]. Researchers and clini-
cians have leveraged depth data along with skeletal data to cre-

1 Copyright c© 2016 by ASME

FIGURE 1: Kinect uses a right handed
coordinate system as shown to report
joint data.

FIGURE 2: Kinect skeletal
data shows 25 joints being
tracked.

ate many interactive feedback solutions to help patients do ex-
ercises correctly [3, 4, 5]. Robotics assistance is another area
in which Kinect has replaced conventional visual sensing capa-
bilities using color cameras by providing additional data like in-
frared frames and depth frames, which otherwise are obtained by
post processing the color images. Controlling a robotic arm us-
ing human gestures seems non-trivial at first, but Kinect’s skele-
tal data along with its gesture capabilities have made this task
possible and making robotic control more user-friendly [6]. It
also provides point cloud data and has been used in conjunction
with natural hand-gestures for CAD modeling, like sweeping a
cylinder [7]. Despite the noise that accompanies the Kinect sen-
sor data, it has been used with filtering algorithms to create 3D
reconstruction of scenes, objects and other components in virtual
reality [8]. Microsoft’s Kinect for Windows page [9] has numer-
ous examples of innovative applications in Physical Computing
area, which is concerned with creating interactive physical sys-
tems using sensor data from the real-world.

Accurate and precise motion analysis has always been an in-
tegral part of bio-mechanical applications like gait analysis and
correction. Kinematic study of human motion involving 2D and
3D motion capture was an involved problem prior to the launch
of Kinect sensor. However, Kinect has facilitated three dimen-
sional kinematic analysis of simple human motions by measuring
parameters like joint-positions [10].

In this paper, we are presenting a framework which can be
used for generating key position and continuous motion data for
planar- and spatial-mechanism synthesis and rigid-body motion
generation using hand movements. Most mechanism synthesis
algorithms rely on input of a few discrete (or, key) positions.
Thus, capturing key positions provides 1) a natural way to feed
motion task to the synthesis algorithms, and 2) to reduce the stor-
age overhead by not storing position data in every frame.

Our proposed tool has been developed using Microsoft
Kinect for Windows v2 in conjunction with Openframe-
works [11] and OpenGL 3D graphics API [12]. Kinect is a depth-
and RGB-sensing hardware consisting of an RGB camera, in-
frared camera and a microphone array. It provides RGB images
of size 1920×1080 and IR cameras are used to capture real-time
depth images of size 512× 424 both of them seeding data with
a frame rate of 30 Hz. Field of view for IR cameras is 70 de-
grees in horizontal direction and 60 degrees in vertical direction.
To take advantage of this hardware, a free SDK is provided by
Microsoft along with various sample programs to give a feel of
different types of data provided by Kinect. In our work we have
mainly use the joint data provided by its skeleton frame which
uses depth data in order to measure the distance in Z-direction.
Kinect device uses the principle of structure light in order to get
the Z−dimension.

Kinect’s Software Development Kit (SDK) provides three-
dimensional joint coordinates (X, Y, and Z) in meters with re-
spect to Kinect’s fixed reference frame as shown in Fig. 1. This
data is provided for 25 different joints in human body as shown
in Fig. 2. Kinect’s depth sensing capability, gesture recognition
built in its SDK, and wide range field of views in both horizontal
and vertical direction have been instrumental in developing 3D
visualization and capture of motions in this work.

We store key positions and continuous motions in real-time
by hand gestures and palm movement – assuming a moving co-
ordinate frame attached to left palm and measuring its relative
orientation with respect to the Kinect’s fixed reference frame, we
generate direction-cosine rotation matrix. By combining the ro-
tation matrix with the translation vector from the fixed frame to
the moving frame, we generate a 4× 4 homogeneous transform
and dual quaternion representation of the motion. The user alter-
nates between moving and pausing for a few frames to capture
key positions. The beginning of a continuous motion recording
is signaled by raising of the right hand and stopped by lower-
ing it. In between, the user moves left palm freely in the space
and Kinect continues to record all the frames; the tool generates
corresponding dual quaternions and stores them. We show that
we can use just a few key positions to generate C2−continuous
rational B-spline motions, which could substitute for continuous
recording. An outcome of this work is to provide an interactive
tool to input positions and to utilize human motions as interactive
medium for mechanism design. The tool and the instructions for
its use will be posted at http://me.eng.sunysb.edu/software.

Rest of this paper is organized as follows: In section 2,
we review the concept of dual quaternions and discuss how we
generate 4× 4 homogeneous transformation matrices and dual
quaternions from the joint-data. This allows real-time capture of
both key positions as well as continuous motions. In sections 3,
we discuss methods for interpolating and approximating key po-
sitions with cubic B-spline motions, which reduces data storage
requirements. Finally, we discuss the details of graphic visual-

2 Copyright c© 2016 by ASME

ization and tool’s user interface in the last section.

2 Pose generation from skeletal data
Mechanism synthesis for the motion generation problem re-

quires pose (position and orientation) data with the constraint
that the resulting mechanism should pass through the given poses
or come as close as possible. In this section, we show how
Kinect-provided skeletal data in the form of joint positions in
three-dimensional coordinates is converted into pose data repre-
sented as dual quaternions. We first review the concept of quater-
nions and dual quaternions to the extent necessary for the devel-
opment of this paper.

2.1 Dual Quaternions for Spatial Displacement
A spatial displacement (Fig. 3) can be represented as a rigid

body transformation from a moving frame M to a fixed frame F
in terms of a 4×4 homogeneous matrix:

FIGURE 3: A spatial displacement given by rotation axis s, angle of
rotation θ, and translation vector d. M and F indicate moving and fixed
frames, respectively.

[
X
1

]
=

[
[R] d

0 0 0 1

][
x
1

]
, (1)

where X and x are vectors whose scalar components are the
Cartesian coordinates of the point as measured in F and M, re-
spectively.

Matrix representations are, however, verbose and problem-
atic for motion interpolation because the rotation matrix in the
interpolation and approximation process has to remain orthonor-
mal; see Fillmore [13] and Roschel [14]. It has been recognized
that an effective way of dealing with the problem is to use quater-
nions [15] and dual quaternions [16, 17].

The rotation matrix [R] can be parameterized with quater-
nion coordinates Q = (q1,q2,q3,q4) related to the unit axis of
rotation s = (sx,sy,sz) and the rotation angle θ by

q1 = sx sin(θ/2), q2 = sy sin(θ/2), q3 = sz sin(θ/2), q4 = cos(θ/2).
(2)

The above given quaternion coordinates satisfy the following re-
lation:

Q ·Q = q2
1 +q2

2 +q2
3 +q2

4 = 1. (3)

When the above condition is satisfied, Q is called a unit quater-
nion. Then rotation matrix [R] in terms of quaternion coordinates
is given by

[R] =
1
S2

q2
4+q2

1−q2
2−q2

3 2(q1q2−q4q3) 2(q1q3+q4q2)
2(q2q1+q4q3) q2

4−q2
1+q2

2−q2
3 2(q2q3−q4q1)

2(q3q1−q4q2) 2(q3q2+q4q1) q2
4−q2

1−q2
2+q2

3

 ,
(4)

where S2 = q2
1 +q2

2 +q2
3 +q2

4.
A dual quaternion Q̂ = Q + εQ0, where ε is the dual

unit with the property ε2 = 0, can represent a spatial displace-
ment [16, 17]. The real part Q = q1i+q2j+q3k+q4 is defined
by the homogeneous Euler parameters of rotation as given in
Eq. (2). The dual part, Q0, which is associated with the trans-
lational component of the spatial displacement is given by


q0

1
q0

2
q0

3
q0

4

 =
1
2


0 −d3 d2 d1
d3 0 −d1 d2
−d2 d1 0 d3
−d1 −d2 −d3 0




q1
q2
q3
q4

 . (5)

The dual part can also be written as a quaternion product

Q0 = (1/2)dQ, (6)

where d is a vector quaternion associated with the translation
vector. Dual quaternions remain invariant when multiplied with
a scalar, i.e., same rotation matrix and translation components are
obtained. Therefore, Ravani and Roth [18, 19] considered them
as a set of four homogeneous dual coordinates that define a point
in a projective dual three-space called the image space of spatial
displacements.

2.2 Position Capture

3 Copyright c© 2016 by ASME

FIGURE 4: The moving frame
is attached to the palm of
user’s hand; i,j,k are the unit
basis vectors computed using
hand joints.

We attach the moving
frame to the palm of user’s left
hand as shown in the Fig. 4
and use three joint-data infor-
mation (Phand , PhandTip, and
PhandT humb) provided by the
Kinect SDK to construct this
frame. The choice of left hand
is arbitrary to input a task po-
sition; alternatively, the right
hand could be chosen while
ensuring the right-handedness
of a coordinate frame attached
to the hand. The plane of the
palm provides the X-Y plane,
while the Z-axis is obtained by
taking a cross-product of unit
vectors in the X-Y plane using
right-hand rule as follows:

j = ~u/|~u|,
where~u = PhandTip−Phand

k = j×~v/|~v|,
where~v = PhandT humb−Phand

i = j×k

The 4× 4 homogeneous matrix representing this moving
frame M with respect to the Kinect-located fixed frame F can
be written as

T =


I · i I · j I ·k d1
J · i J · j J ·k d2
K · i K · j K ·k d3

0 0 0 1

 , (7)

where I, J, and K are the unit basis vectors of F , while d =
(d1,d2,d3) represents the translation vector from F to M. In
the above matrix, upper 3×3 matrix is the well-known direction
cosine matrix. A dual quaternion representation for this matrix
can be obtained by computing rotation part Q = (q1,q2,q3,q4)
of the dual quaternion by solving Eq. (4) [20, 21]. The dual
part Q0 = (q0

1,q
0
2,q

0
3,q

0
4) is obtained from Eq. (5). Thus, a dual

quaternion Q̂ is obtained for every key position.
Planar linkage synthesis usually requires strictly planar mo-

tion data. In that case, we can ignore translations in Z−direction
and set d3 = 0 in the Eq. (1), while the upper 2×2 matrix would
represent a rotation in the X-Y plane. The corresponding homo-

geneous matrix reduces to

[H] =


cosθ −sinθ 0 d1
sinθ cosθ 0 d2

0 0 1 0
0 0 0 1

 , (8)

where θ is the angle of rotation in the X-Y plane.
For a planar displacement, a dual quaternion reduces to a

planar quaternion Z = Z1iε+Z2 jε+Z3k+Z4 given by following
four components [17]:

Z1 =
d1

2
cos

θ

2
+

d2

2
sin

θ

2
,

Z2 = −d1

2
sin

θ

2
+

d2

2
cos

θ

2
,

Z3 = sin
θ

2
,

Z4 = cos
θ

2
. (9)

Therefore, for n key positions, we obtain n dual- or planar-
quaternions. Their corresponding homogeneous transforms can
be obtained by solving for rotation matrix [R] from Eq. (4) and
translation vector d by inverting Eq. (5) and then substituting in
Eq. (1).

2.3 Key Position Recognition
For a position to be recognized as a key position, we use

the following algorithm, where we measure the deviation of a
particular position over time. If the position does not change
as evidenced by a pause in the motion over a certain number
of frames, we record that position as a key position. As shown
in Algorithm 1, we are computing ∆ representing the difference
between two successive positions and a numerical measure of
this difference is to be obtained either from its corresponding
homogeneous matrix T or dual quaternion representation Q̂. If
the difference remains below a threshold and a certain number of
frames have elapsed, the position is recorded as a key position.

However, this is not a trivial problem – it is well-known that
a metric for a planar- or spatial-displacement should be ideally
bi-invariant (invariant with respect to change in moving or fixed
reference frames) and meaningful so that the disparate units of
translation and rotation can be combined [22]. McCarthy [23]
showed that planar and spatial rigid-body motions can be re-
garded as special cases of spherical and 3-spherical motions, re-
spectively and using this notion, an approximately bi-invariant
metric can be obtained. Larochelle et al. [24] used Polar De-
composition (PD) and singular value decomposition (SVD) of a
homogeneous transformation matrix associated with an element

4 Copyright c© 2016 by ASME

Algorithm 1 Position Capture algorithm

1: procedure RECORDPOSITION
2: for i = 1 do
3: if body→ tracked then
4: if ∆ < Threshold then
5: if fameBuffer = frameCount then
6: KeyPosition← Position
7: else
8: frameBuffer++
9: else

10: frameBuffer=0
11: return KeyPosition

of SE(n) to find the nearest approximating element in SO(n+1)
and then used a metric in the space of rotations, which leads to
an approximately bi-invariant metric. Purwar and Ge [25] pro-
posed an analytical method, which converts a dual quaternion
into a biquaternion that represents a four-dimensional rotation.
We briefly review this method for the computation of a deviation
in hand position. Introducing a pair of unit quaternions, G and
H, called biquaternions such that

G = DQ, H = D∗Q, (10)

where D is a unit quaternion given by

D =
2R√

4R2 +d2
+ d̄

d√
4R2 +d2

, (11)

and its conjugate

D∗ =
2R√

4R2 +d2
− d̄

d√
4R2 +d2

. (12)

In above equations, R is chosen to be a sufficiently large num-
ber to achieve better approximation [24], while d̄ is a unit vector
along translation vector d and d is the magnitude of the trans-
lation vector. Then, given two poses defined by two sets of bi-
quaternions, say (G1,H1) and (G2,H2), the distance ∆ between
them is given by

∆ =
√
(G1−G2).(G1−G2)+(H1−H2).(H1−H2) (13)

In the algorithm 1, we have used a Threshold value of 0.2
and the frameCount was set to 200 frames, after which we de-
clare a position to be a key position. On the other hand, for con-
tinuous motion capture, we record all the frames and store the
resulting displacements as a set of dual quaternions.

3 Motion Generation and Visualization
Once the key positions have been captured, we can employ

motion design algorithms to produce smooth motions that either
approximate given positions or interpolate them. We apply Com-
puter Aided Geometric Design (CAGD) algorithms in the image
space of spatial displacements to obtain a representation for ra-
tional motions in the Cartesian space [26, 27, 28]. For motion
visualization, we use OpenGL 3D graphics API, which requires
a homogeneous transform. The flow chart in Fig. 5 illustrates the
process from capture to visualization.

FIGURE 5: Data Flow from Kinect sensor to the final output on OpenGL
screen

3.1 Rational B-spline Motion
Given n + 1 key positions and their corresponding dual

quaternions Qi., a rational B-spline motion can be obtained by
designing a B-spline curve in the image space of spatial displace-
ments. A B-spline curve represented by dual quaternions is given
as [28]

Q̂(t) =
n

∑
i=0

Ni,p(t)Q̂i (14)

where Ni,p(t) are p-th degree B-spline basis functions [29]. Sub-
stituting for Q(t) in Eq. (1), we obtain a Cartesian motion of
degree 2p due to quadratic functions of quaternion parameters.
Such a motion approximates the given key positions, which can
be useful for generating a smooth motion from the given key po-
sitions. Figure 6 shows six recorded key positions along with tra-
jectory resulting from an approximating B-spline motion, while
the approximating degree-six rational B-spline motion is shown
in Fig.7. Table 1 gives the dual quaternions for the key positions.

The input key positions can be construed as interpolating
positions as well. A B-spline interpolating motion can be gener-
ated using the Global Motion Interpolation Algorithm for curve
design [29]. In this algorithm, the known quantities are the in-
terpolating positions Qi and we want to interpolate these given

5 Copyright c© 2016 by ASME

FIGURE 6: Recorded 6 key positions to approximate a cubic B-spline,
trajectory passing through center of each input position

FIGURE 7: A cubic B-spline approximating motion with 6 positions

TABLE 1: Dual Quaternion key positions data in the form (Q;Q0) for
spatial cubic B-spline motion; rotation part of the Quaternion is dimen-
sionless, while in the dual part, the translation vector coordinates are
measured in meters.

Q̂0 (-0.2216, 0.1610, 0.2679, 0.9236); (-0.6333, 0.0625, 1.0043, -0.4541)

Q̂1 (-0.2388, 0.1204, -0.0151, 0.9634); (-0.5363, -0.0185, 1.0275, -0.1145)

Q̂2 (-0.2688, 0.2099, -0.3813, 0.8591); (-0.5295, -0.1459, 0.9375, 0.2861)

Q̂3 (-0.3482, 0.0896, -0.1204, 0.9252); (-0.2439, -0.2519, 1.0781, 0.0729)

Q̂4 (-0.3161, 0.3156, 0.1661, 0.8791); (-0.1911, -0.2026, 0.9585, -0.1771)

Q̂5 (-0.2571, 0.3291, -0.0142, 0.9084); (-0.0797, -0.0363, 0.9960, 0.0061)

positions with a degree p B-spline curve in the image space.

Qi =
n

∑
i=0

Ni,p(ūk)Pi (15)

Here the control positions Pi are the unknowns. With above
equation, we need to solve a (n+ 1)×(n+ 1) system of linear

equation to obtain Pi. For the same key positions as given in Ta-
ble 1, a cubic B-spline interpolating motion is shown in Fig. 8.

FIGURE 8: A cubic B-spline interpolation with 6 positions

4 Graphic Visualization and Tool Interface
Backbone of our application is OpenFrameworks 0.8.4 [11],

which is an open source C++ toolkit developed for creative ap-
plication development. We have used its GUI toolkit for imple-
menting simple interaction like changing the degree of motion
and selecting between motion approximation and interpolation.
Moreover, options are made available to see specific motions like
screw motion and B-spline motion. We have used OpenGL for
motion visualization – its strong API support for graphical ren-
dering and matrix manipulation makes it possible to represent
interpolating motion in a more natural way.

The user interface of the tool is shown in Fig. 9. The top left
window shows the OpenGL visualizations, i.e. recording motion
and respective interpolated motion. Bottom left corner shows
the spatial position data in the form of coordinate frames using
Openframeworks, while on the right, we see the Kinect camera
and skeletal tracking.

Gestures are used to initialize and stop recording of contin-
uous motion recording. Movement of hands from initial posi-
tion to final position results into a gesture that will initiate the
continuous motion capture – when we move our hand in verti-
cal direction from initial to final position, recording for continu-
ous motion will start, and same gesture when repeated stops the
recording as well.

An additional feature is to provide export of dual quaternion
data in XML format, which can be imported in a mechanism
synthesis application for designing mechanisms.

5 Conclusions and Future Work
In this paper, we have reported a method for capturing hu-

man poses and motion using Microsoft Kinect for ready con-

6 Copyright c© 2016 by ASME

FIGURE 9: User Interface

sumption by mechanism synthesis applications. We have also
developed a prototype tool that provide motion generation and
visualization capabilities. Tool proposed in this paper is an initial
effort to use the power of human interaction device like Kinect to
improve the quality of motion visualization, which is an integral
part in any mechanism synthesis. Moreover, its user interface
allows designer to extract important data required for motion de-
sign. In our future research, we plan to compare the position
results provided by Kinect with other standard methods of track-
ing joint positions. Moreover, we also expect to improve the GUI
along with additional features which can be a complete package
for human collaborated mechanism synthesis applications and
extend its usability in medical domain for designing mechanisms
for physically challenged patients.

REFERENCES
[1] Mndermann, L., Corazza, S., and Andriacchi, T. P., 2006,

“The evolution of methods for the capture of human move-
ment leading to markerless motion capture for biomechan-
ical applications”, Journal of NeuroEngineering and Reha-
bilitation.

[2] Lange, B., Koenig, S., McConnell, E., Chang, C., Juang,
R., Suma, E., Bolas, M., and Rizzo, A., “Interactive game-
based rehabilitation using the Microsoft Kinect”, Virtual
Reality Short Papers and Posters (VRW), 2012 IEEE, pp.
171–172.

[3] Microsoft, “Kinect app for physical ther-

apy put to the test”, URL https://blogs.msdn.
microsoft.com/kinectforwindows/2015/06/05/
kinect-app-for-physical-therapy-put-to-the-test/.

[4] Smisek, J., Jancosek, M., and Pajdla, T., 2011, “3D with
Kinect”, .

[5] Pinto, A. M., Costa, P., Rocha, A. P. M. L. F., Veiga, G.,
and Moreira, E., 2015, “Evaluation of Depth Sensors for
Robotic Applications”, .

[6] Liying, C., Qi, S., Han, S., Yang, C., and Shuying, Z.,
“Design and implementation of human-robot interactive
demonstration system based on Kinect”, Control and Deci-
sion Conference (CCDC), 2012 24th Chinese, pp. 971–975.

[7] Inc., A., 2016, “Reality Capture Inside AutoDesk using
Kinect Fusion”, .

[8] Alexiadis, D. S., Zarpalas, D., and Daras, P., 2013, “Real-
Time, Full 3-D Reconstruction of Moving Foreground Ob-
jects From Multiple Consumer Depth Cameras”, Multime-
dia, IEEE Transactions on, 15(2), pp. 339–358.

[9] Microsoft, “Kinect for Windows Product Blog”, URL https:
//blogs.msdn.microsoft.com/kinectforwindows/.

[10] Wham, R. M., 2012, “Three-Dimensional Kinematic Anal-
ysis Using the Xbox Kinect”, Honors thesis projects.

[11] Lieberman, Z., Watson, T., and Castro, A., “OpenFrame-
works”, URL http://openframeworks.cc/about/.

[12] Group, K., 2016, “OpenGL”, .
[13] Fillmore, J. P., 1984, “A note on rotation matrices”, IEEE

Computer Graphics & Application, 4(2), pp. 30–33.
[14] Röschel, O., 1998, “Rational motion design - a survey”,

7 Copyright c© 2016 by ASME

https://blogs.msdn.microsoft.com/kinectforwindows/2015/06/05/kinect-app-for-physical-therapy-put-to-the-test/
https://blogs.msdn.microsoft.com/kinectforwindows/2015/06/05/kinect-app-for-physical-therapy-put-to-the-test/
https://blogs.msdn.microsoft.com/kinectforwindows/2015/06/05/kinect-app-for-physical-therapy-put-to-the-test/
https://blogs.msdn.microsoft.com/kinectforwindows/
https://blogs.msdn.microsoft.com/kinectforwindows/
http://openframeworks.cc/about/

Computer-Aided Design, 30(3), pp. 169–178.
[15] Shoemake, K., “Animating rotation with quaternion

curves”, SIGGRAPH85, ACM Computer Graphics, vol-
ume 19, pp. 245–254.

[16] Bottema, O. and Roth, B., 1979, Theoretical Kinematics,
Dover Publication Inc., New York.

[17] McCarthy, J. M., 1990, Introduction to Theoretical Kine-
matics, The MIT Press, Cambridge, MA.

[18] Ravani, B., 1982, “Kinematic mapping as applied to mo-
tion approximation and mechanism synthesis”, Ph.d. dis-
sertation.

[19] Ravani, B. and Roth, B., 1983, “Motion Synthesis Using
Kinematic Mappings”, Journal of Mechanisms Transmis-
sions and Automation in Design-Transactions of the Asme,
105(3), pp. 460–467.

[20] Dam, E. B., Koch, M., and Lillholm, M., 1998, “Quater-
nions, interpolation and animation”, Technical Report
DIKU-TR-98/5, University of Copenhagen.

[21] Klumpp, A. R., 1976, “Singularity-free extraction of a
quaternion from a direction-cosine matrix”, Journal of
Spacecraft and Rockets, 13(12), pp. 754–755.

[22] Park, F. C., 1995, “Distance Metrics on the Rigid-Body
Motions with Applications to Mechanism Design”, ASME
Journal of Mechanical Design, 117(1), pp. 48–54.

[23] McCarthy, J. M., 1983, “Planar and Spatial Rigid Body
Motion as Special Cases of Spherical and 3-Spherical Mo-
tion”, ASME Journal of Mechanism, Transmission, Au-
tomation, 105, pp. 569–575.

[24] Larochelle, P., Murray, A., and Angeles, J., 2007, “A dis-
tance metric for finite sets of rigid-body displacements via
the polar decomposition”, ASME Journal of Mechanical
Design, 129(8), pp. 883–886.

[25] Purwar, A. and Ge, Q. J., 2013, “Polar Decompo-
sition of Unit Dual Quaternions”, ASME Journal of
Mechanisms and Robotics, 5(3), pp. 031001–031001,
10.1115/1.4024236.

[26] Ge, Q. and Ravani, B., 1991, “Computer aided geometric
design of motion interpolant”, Proceedings of 17th ASME
Design Automation Conference, pp. 33–41.

[27] Juttler, B. and Wagner, M., 1996, “Computer Aided Design
With Spatial Rational B-Spline Motions”, ASME Journal
of Mechanical Design, 119(2), pp. 193–201.

[28] Purwar, A. and Ge, Q. J., 2005, “On the Effect of Dual
Weights in Computer Aided Design of Rational Motions”,
ASME Journal of Mechanical Design, 127(5), pp. 967–972.

[29] Piegl, L. and Tiller, W., 1995, The NURBS Book, Springer,
Berlin.

8 Copyright c© 2016 by ASME

	Introduction
	Pose generation from skeletal data
	Dual Quaternions for Spatial Displacement
	Position Capture
	Key Position Recognition

	Motion Generation and Visualization
	Rational B-spline Motion

	Graphic Visualization and Tool Interface
	Conclusions and Future Work

