MEC 320: Numerical Methods in Engineering Design and Analysis
Course Syllabus (Spring 2018)

Course Information

Time: Tuesdays and Thursdays: 11:30AM – 12:50 PM
Location: Engineering 145 - Credits: 3
Pre-requisites: 1) MEC 102 or MEC 111 or MEC 112 or CSE 114 or CSE 130 or 130 or ESG 111 or ESE 124 or BME 120, 2) AMS 261 or MAT 203, 3) AMS 361 or MAT 303
Book: Numerical Methods for Engineers by Steven C. Chapra, 7th edition, REQUIRED

Description: This course emphasizes the implementation of numerical methods for computer-aided solutions to the problems that arise in engineering design and analysis. Methods include interpolation, extrapolation, curve fitting, and integration and techniques solving non-linear equations, systems of linear equations, and differential equations. Optimization in engineering design is covered from the formulation of design specifications and criteria, to analyzable models, through to numerical implementation.

Grading: 10 HW Assignments: 10%
Attendance: 5%
4 Programming Assignments: 40%
Midterm Exam: 20%
Final Exam: 25%

Statement on Academic Dishonesty:
Academic dishonesty is an extremely serious offense and will not be tolerated in any form. Academic dishonesty in general is the presentation of intellectual work that is not originally yours. Examples include, but are not limited to, copying or plagiarizing class assignments including homework, reports, designs, and other submitted materials; copying or otherwise communicating answers on exams with other students; bringing unapproved aids, either in physical (written) or electronic form to an exam; obtaining copies of

Instructor Information

Name: Professor Benjamin Lawler
Office Location: Light Engineering 131
E-mail: benjamin.lawler@stonybrook.edu
Office Hours: Tue & Thu: 1:00 PM – 3:00 PM
TA Office Hours: Aktaruzzaman Al Hossain: TBD, Ziming Yan: TBD

Assignment #
Due

Date	Description	Chapters	HW	Program
1	1/23/2016 Intro, Syllabus, and Motivation	1 & 3		
2	1/25/2016 Errors and Taylor Series	4		
3	1/30/2016 Finding Roots	5		
4	2/1/2016 Finding Roots	5...6	1	
5	2/6/2016 Finding Roots	56		
6	2/8/2016 Review: Finding Roots	4...6	2	
7	2/13/2016 Linear Algebraic Equations	9		
8	2/15/2016 Linear Algebraic Equations	9...10	3	
9	2/20/2016 Linear Algebraic Equations	10	1	
10	2/22/2016 Linear Algebraic Equations	11		
11	2/27/2016 Optimization	13	4	
12	3/1/2016 Optimization	14		
13	3/6/2016 Optimization	15	2	
14	3/8/2016 Midterm	5		
15	3/13/2016 Spring Break			
16	3/15/2016			
17	3/20/2016 Curve Fitting, Interp., & Fourier	17		
18	3/22/2016 Curve Fitting, Interp., & Fourier	17...18		
19	3/27/2016 Curve Fitting, Interp., & Fourier	18		
20	3/29/2016 Curve Fitting, Interp., & Fourier	19	6	
21	4/3/2016 Numerical Integr. & Differ.	21		
22	4/5/2016 Numerical Integr. & Differ.	21...22	7	
23	4/10/2016 Flex Day - Review		3	
24	4/12/2016 Flex Day - Review			
25	4/17/2016 Numerical Integr. & Differ.	22...23		
26	4/19/2016 ODEs and Intro to Finite Element	25	8	
27	4/24/2016 ODEs and Intro to Finite Element	25...26		
28	4/26/2016 ODEs and Intro to Finite Element	26...27	9	
29	5/1/2016 ODEs and Intro to Finite Element	27		
30	5/3/2016 Review	10	4	
31	5/9/2016 Final Exam: 5:30 PM to 8:00 PM			
Location: TBD				
an exam prior to its administration, etc. Academic dishonesty violates both the ethical and moral standards of the Engineering profession and all infractions related to academic dishonesty will be prosecuted to the fullest via the CEAS CASA committee. For you, the honest student, academic dishonesty results in lower class curves, hence a depression in your GPA and class standing, while cheapening the degree you earn.

Course Learning Objectives:

Upon completion of this course, students will be able to:

1. Numerically find roots of nonlinear scalar equations.
2. Numerically solve systems of linear algebraic equations.
3. Interpolate and extrapolate a data set.
4. Differentiate and integrate numerically.
5. Pose and understand the nature of an optimal design problem.
6. Solve unconstrained and constrained optimization problems numerically.
7. Find numerical solutions of two-point BVP’s.
8. Find numerical integrations of ODE IVP’s.
9. Use methods of curve fitting.

DISABILITY SUPPORT SERVICES (DSS) STATEMENT

If you have a physical, psychological, medical or learning disability that may impact your course work, please contact Disability Support Services, ECC (Educational Communications Center) Building, room128, (631) 632-6748. They will determine with you what accommodations, if any, are necessary and appropriate. All information and documentation is confidential.

Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website: http://www.stonybrook.edu/ehs/fire/disabilities

ACADEMIC INTEGRITY STATEMENT:

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty are required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology & Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website http://www.stonybrook.edu/uaa/academicjudiciary/

CRITICAL INCIDENT MANAGEMENT:

Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of Judicial Affairs any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their school-specific procedures.